标签归档:陀螺仪原理

详解MEMS陀螺仪的工作原理

想象下你坐在一个以恒定转速旋转着的旋转木马上:你站在它的中心,开始以一个恒定的速度沿着一条直线行走,这条直线是以放射状画在地板上,从中心指向外沿(图1)。你会感觉到什么力量?这一问题的答案会有助于解释的工作原理。

如今,1817年发明的陀螺仪在车辆控制、航空、航天、导航、机器人及军事领域都得到了应用。也推动了在消费电子产品当中的应用,例如:在固定相机中的应用和交互式视频游戏中的应用。许多智能手机的应用程序也都充分利用了MEMS陀螺仪的功能。

工程师们知道,日常活动中的主导力是物理接触力,例如:摩擦力,以及在一定距离上作用的力——电磁力和重力。然而什么是惯性力、离心力,以及以科里奥利(Gaspard-Gustave Coriolis)命名的科里奥利力?它们不是真正的力吗?答案:不是。

陀螺仪是一种测量一个物体围绕某个中心旋转轴的角速度的装置。传统的陀螺仪体积庞大、昂贵,且不可靠。MEMS技术具有成批生产、体积小、价格低的优势。几乎所有的MEMS陀螺仪都采用振动机械元件,这些元件受驱动在芯片平面上振荡,并响应相同平面上的其他振荡动作而旋转。MEMS陀螺仪的主要原理是通过科里奥利加速度,在驱动模式和检测模式之间转移能量。对科里奥利力的基本理解使得这一激动人心的技术得到了发展。

光纤陀螺仪传感器的原理、分类以及发展方向

。它是以光导纤维线圈为基础的敏感元件, 由激光二极管发射出的光线朝两个方向沿光导纤维传播。光传播路径的变,决定了敏感元件的角位移。

光纤陀螺仪传感器的分类方式有多种,依照工作原理可分为干涉型、谐振式以及受激布里渊散射光纤陀螺仪三类;按电信号处理方式不同可分为开环光纤陀螺仪和闭环光纤陀螺仪;按结构又可分为单轴光纤陀螺仪和多轴光线陀螺仪等。

陀螺仪传感器具有质量轻、体积下、成本低、精度高、可靠性高等优势,这些突出特点使其在航天航空、机载系统和军事技术上的应用十分理想,因此受到用户特别是军队的高度重视,以美、日、法为主体的陀螺仪传感器研究工作已取得很大的进展。光纤陀螺仪研究工作大部分集中在干涉式,只有少数公司仍在研究谐振式光纤陀螺。陀螺仪传感器的商品化是在上世纪90年代初才陆续展开,中低精度的光纤陀螺己经商品化,并在多领域内应用,高精度光纤陀螺仪的开发和研制正走向成熟阶段。国内的光纤陀螺经过相关院校和科研研所的努力,研制水平虽然与国际水平有一定距离,但已具备或接近中、低精度要求,并在近年来开始尝试产业化。

1、采用三轴测量代替单轴,研发多功能集成光学芯片、保偏技术等,加大光纤陀螺的小型化、低成本化力度;

3、加强精密级光纤陀螺的技术与应用研究,开发新型的光纤陀螺B-FOG和FRLG等。

陀螺仪传感器正在朝着军用领域向民用领域转变的过程,随着消费电子的发展,陀螺仪的市场逐步拓宽,这里面蕴含的商机值得广大传感器厂商发掘。